Math 347: Lecture 4 - Worksheet

September 10, 2018

- 1) Consider $\mathbb{N} = \{0, 1, 2, 3, ...\}$ the set of natural numbers, $S = P(\mathbb{N})$ the power set of \mathbb{N} , $f : \mathbb{N} \to \mathbb{N}$ a function given by $f(n) = n^2 + 1$. Are the following true or false? Justify.
 - (i) $1 \subset P(\mathbb{N})$?
 - (ii) $1 \in \mathbb{N}$?
 - (iii) $1, 2 \in P(\mathbb{N})$?
 - (iv) $2 \subset P(\mathbb{N})$?
 - (v) $f^{-1}(0) \in \mathbb{N}$?
 - (vi) $f^{-1}(1) \in \mathbb{N}$?
 - (vii) $f^{-1}(f(1,2)) \subset \mathbb{N}$?
 - (viii) $1, 2 \subset \mathbb{N}$?
 - (ix) $\mathbb{N} \subset P(\mathbb{N})$?
 - (x) $\emptyset \in P(\mathbb{N})$?
- 2) Consider

$P(x) = x^2$ is positive.", $Q(x) = x^2$, R = "all real numbers are positive."

Are the following true or false? Justify.

- (i) P(x) is a statement.
- (ii) $(\forall x \in \mathbb{R})P(x)$ is a statement.
- (iii) $(\exists x \in \mathbb{R})P(x)$ is a statement.
- (iv) Q(2) is a statement.
- (v) Q(2) = 5 is a statement.
- (vi) R is a statement.
- (vii) $R \Rightarrow (Q(2) = 5)$ is true.
- (viii) $(x \in \mathbb{R}) \Rightarrow P(x)$.
- 3) What is the contrapositive of the statement: "For $f(x) = x^2 + b$ if $x \neq y$ and $x \neq -y$, then $f(x) \neq f(y)$."? Prove that the contrapositive is true. What can you deduce?
- 4) Prove the statement "If a is bigger than or equal to any real number smaller than b, then $a \ge b$." Consider proof by contradiction.
- 5) Consider the numbers x_1, \ldots, x_4 . Prove that at least one of them is smaller than or equal to their average.
- 6) (Challenge) Suppose that a and b are integer numbers not divisible by 3. Prove that $ax^2 + b = 0$ has a rational solution if and only if a and b have the same reminder when divided by 3, i.e. $a \equiv b \pmod{3}$.